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TABLE I
COMPARISONOF MEASUSEDAND CALCULATEDPARAMETERS

Main Cavity Frequency Main to Side Cavity

Depth of (MHz) Coupling

Overlap ‘d’
(mm) Measured Calculated Measured Calculated

6 2997.85 2994.96 0.0127 0.0111
7.6 2991.79 2988.16 0.0216 0.0204
8.6 2987.55 2984.69 0.0282 0.0281
9.2 2984.15 2982.94 0.0321 0.0335

IV. CALCULATIONS AND RESULTS

To evaluate the inter-cavity coupling constant one has to first

evaluate the fields at the center of the ellipse by which the aperture

is represented. We do this by using the finite element routine

developed in [7]. The computed values of the frequency of the main

cavity (with the aperture on its wall), and the intercavity coupling

constant are given in Table I for different sizes and positions of

the iris as determined by the depth of overlap d. Along with these

the corresponding experimental values are also given. The uncut

resonant frequency of the main cavity used for generating Table I

was 3006.7 MHz. Earlier we only had the experimental technique.

The new aspect is our ability to predict the values. The prediction is

precise enough for our needs during the initial design stage. Thus,

we have been able to simplify the design process.
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Shape Function Optimization in the Finite

Element Analysis of Waveguides

H. E. Hernindez-Figueroa and G. Pagiatakis

Abstract—In this paper, a novel finite element technique is presented,

which can substantially reduce the computational effort required for the

analysis of waveguide structures. Demonstrative examples, whose finite

element solutions are obtained by combhing this technique with two

well-known formulations —.& – H; and H-field-are given.

I. INTRODUCTION

A drawback of the finite element method when applied to modal

waveguide analysis is the extensive use of computer resomrces:

memory space and time. Although the order of the resulting matrix

eigenvalue problem mainly depends on the geometry of the specific

structure analyzed, the kind of mesh adopted, and the formulation

used, most of these problems demand a large amount of data

manipulations. However, substantial reduction of the computational

effort can be achieved by taking advantage of the Rayleigh–Ritz

Principle (RRP), which is the basis of the cwfmite element technique

[1]-[3]. This technique was first introduced by Laura and co-workers

(see [1] and references therein) who used modified basis funclions

for the bilinear quadrilateral (Q I ) elements applied to the scalar 2-D

Helmholtz equation. In [2], novel basis functions were introdttced to

deal with the versatile linear triangular (PI ) elements, and applied to

the vectorial E% – Hz formulation [4]. Also, in that reference., the

performances of those two sets of basis functions were compared,

and the results showed almost no differences in terms of accuracy.

However, as the modified l’1 functions provide close analytical

expressions for the integrals associated with the elements of the

elementary matrices, these functions are much more attractive than

the Q 1 ones, which instead require the use of numerical integration

schemes, and therefore, more CPU time.

In this paper, the P1-a-finite element technique is presented, and

the conditions for combining with finite element formulations for the

analysis of waveguide structures are discussed. Also, the feasibility

of such combined approaches is demonstrated by making use of the

widely known E, – H, and H-field [5] formulations, applied to the

analysis of hollow and dielectric-loaded metallic waveguides which

possess analytical solutions [6].

11. THE PI -CY-FINITE ELEMENT TECHNIQUE

This technique, contrary to the common practice of increasing the

mesh size or the basis function order, minimizes the discretization

error, for a given mesh, by taking advantage of the RRP. According

to this principle, the approximate eigenvahres ~~, obtained by solving

the resulting matrix eigenvalue problem AZ = MJ.z, where A and

B are Hermitian and B is positive definite, are always upper bounds
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for the exact eigenvalues A:, that is, J, < A:. This suggests the

introduction of an extra parameter in the finite-element scheme,

say a, such that ~~ becomes a function of a: A[ ~ A;(a) =

((~ T(~) A(~) X(~)) /((~ T(CY)B(~)X(~)). Thus, ~~’(a) can be min-
imized in order to reach closer values to %. If that minimum occurs

for ~ = aOP,, then according to the RRP, A, < ~~(~~Pt ) < J:.

In order to meet the requirements of the RRP, we introduce the

parameter a as an exponential factor in the conventional PI basis

functions [7], yielding the following set of suitable modified local

shape functions [2], [3]:

v,=l–(&+q)” (la)

Q,=l–(1–()” (lb)

w3=l–(1– r/)” (lC)

where the coordinates (~, q) are related to the so-called master

finite element [7], i?, which is a triangle with vertices located at

(O, O), (1, O), and (O, 1). The conventional set of PI local shape

functions is obtained by replacing ~ = 1. Also, when a > 1,

those modified functions are concave and, therefore, more suitable for

solving second-order differential operators [2] than the conventional

ones.

On the other hand, we observe that the elements of the elementary

matrices [7] of probably all the finite element formulations available

for waveguide analysis, apart form constants, can be expressed in

terms of the following three equivalent kinds of exact integrals [2],

[3]:

/ /
(C+n)p(l -&) ’d&dv = ,((+V)’(l –V)’dgdv

:

—

-i
(1 - C)’(1 - q) ’d&dq

= l;((p+ 1)(Q + 1))

– r(p+ l)r(~+ 1)/
r(p+q+3)

p,q>–1 (2)

where p, q are real functions of a, and r(z) represents the Gamma

function. Thus, all the terms of such modified elementary matrices can

be written as the product of the conventional ones times very simple

analytical a-dependent factors which assume the value one when a is

set to one. Consequently, the implementation of this technique in the

conventional finite element formulations requires neither additional

numerical integrations nor extra memory space.

III. NUMERICAL RESULTS

First, we analyzed the TE1l /TMM modes of the hollow metallic

rectangular guide shown in cross section in Fig. l(a). For both
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Fig. 1. (a) The cross section of the hollow metallic rectangular waveguide
and 2 x 2 mesh. (b) kO versus e. E, — Hz and H-field formulations: solid
and dashed curves, respectively; 7 x 2 mesh (squares), 4 x 4 mesh (circles),
and 11 x 11 mesh (triangles).

formulations, the propagation constant ~ was set equal to 1 mm–l.

In addition, in order to facilitate the comparison, for the E= – Hz
formulation, the effective propagation constant 13.ff = ~/ko was

set to 1/1.222080, where the exact value of kO (wave number in

vacuum) kO = 1.222080 mm– 1 was adopted. Fig. l(b) illustrates

the variation of the calculated kO versus the parameter a for three

different meshes, and the numerical results are listed in Table I. In

all cases, there exists an optimum value of a = cu~Pt at which the

finite elements solution of kO (a) is minimized and approaches the

exact value. Table I shows that for a given mesh, the accuracy can be

substantially improved. For instance, a 7 x 2 mesh yields a substantial

accuracy improvement: form 0.694% to 0.002’%, and from 0.939% to

0.005%, for the E= – H, and H-field formulations, respectively.

Table I also shows that an 11 x 11 mesh with a = 1 offers the

TABLE I
RESULTSFORTHE HOLLOWMETALLIC RECTANGULARW.4vEGumE

CY=l cl! = aopt

Formulation Mesh IGO (mm-l) Error (%) kO (mm–l) Error (%) ffop t

E, – H.
7x2 1.230516 0.694 1.222111 0.002 1.17

4x4 1.228005 0.485 1.222434 0.029 1.16
11 x 11 1.222426 0.028 1.222100 0.002 1.04

H-Field 7x2 1.233446 0.930 1.222146 0.005 1.20
4x4 1.226613 0.371 1.222459 0.031 1.20

11 x 11 1.222428 0.028 1.222097 0.001 1.04
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same accuracy as a 4 x 4 mesh with Q = ~OPt. Consequently, in this

example, the number of unknowns was reduced by a factor of 7.5,

and the CPU time, including three iterations to determine aOPt, was

reduced by a factor of 10. The method adopted for solving the matrix

eigenvahre problem was the subspace iteration.

Second, we analyzed the fundamental mode of the dielectric-

loaded metallic rectangular waveguide shown in cross section in

Fig. 2(a). For both formulations, we assumed /? = 1 mm–l.

However, in addition, for the E, – Hz formulation we assumed

~eff = 1/0.808724, where the exact value kO = 0.808724 mm-l

was adopted. Fig. 2(b) illustrates the variation of k. versus the

exponential parameter a, for three different meshes, and the related

numerical results are listed in Table II. Again, the values obtained

using a = aoPt are closer to the exact solution than the conventional

ones obtained with a = 1. Table H shows, for instance, that the

same accuracy can be obtained by using either a 10 x 6 mesh with
~ = 1, or a 7 x 4 mesh with a = aOPt. Consequently, the number of

unknowns was reduced by a factor of 2, and the CPU time, including

three iterations, was reduced by a factor of 1.5.

The curves representing the dependence of h on h, show a very

regular behavior with a well-defined minimum. Consequently, this

makes the calculation of aoPt very easy—no more than six attempts

were necessary in all the situations analyzed. However, this number

can be reduced to only three, by noticing that such curves can be very

well fitted by quadratic ones of the kind k(a) = A ~ + A2 + A3 a2,
where A ~,2,3 are coefficients to be determined.

Ahhough in almost all the situations it is possible to reduce the

number of unknowns, there will be cases in which even that reduced

number can be quite large. The consequence of this is that the need

of at least three iterations to calculate aoPt can make the present

technique more CPU time consuming than the conventional finite

element method (~ = 1).

However, the drawback mentioned above can still be overcome

by the present technique. Extensive numerical experiments have

shown that for a given mode, the variations of aoPt and k(aoPt )

are practically negligible for all points of the associated dispersion

curve [2]. Typical variations are less than 0.5% and 0.0190 for CY~Pti

and k(~OPi), respectively. Therefore, one needs to calculate ~o~t only

once. The rest of the curve can be determined by using the same a~Pt,

almost maintaining the same improved accuracy. Consequently, even

if the reduced number of unknowns is significant, it is still possible to

obtain a reduction in CPU time, which would be, in fact, proportional

to the number of points required to determine the dispersion curve.

Finally, the results of the situations so far analyzed show that

the optimization of a also improves the accuracy of the fields

representation.
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Fig. 2. (a) The cross section of the dielectric-loaded metallic rectangular

waveguide and 4 x 2 mesh. (b) kO versus m E, – Hz and H-field

formulations: solid and dashed curves, respectively; 6 x 4 mesh (squares),
7 x 4 mesh (circles), and 10 x 6 mesh (triangles).

IV. CONCLUSIONS

In this paper, the Pi-a technique has

capable of being combined with virtually any

formulation. The results obtained show that

been presented tcl be

available finite element

a substantial reduction

in the number of unknowns, and consequently CPU time, can be

achieved. In principle, this technique should be also useful for the

analysis of optical waveguides. However, its application to nonlinear

waveguide problems, where the nonlinear iterations increase the

computational effort considerably, is particularly recommended.
.

TABLE 11
RESULTS~ORTHE DieleCtriC-LOADED METALLICRECTANGULARGUIDE

ff=l a = a’opt
.—

Formulation Mesh k. (mm-l) Error (%) k. (mm-l) Error (%) O.p*
—

E. – Hz 6x4 0.813998 0.652 0.809910 0.147 1.09

7x4 0.813101 0.541 0.809400 0.083 1.13

10x6 0.809717 0.086 0.808785

H-Field

0.007 1.05

6x4 0.813671 0.612 0.811066 0.289 1.08

7x4 0.813397 0.578 0.810015 0.160 1.12

10x6 0.810009 0.159 0.808789 0.008 1.05
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