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TABLE I
COMPARISON OF MEASURED AND CALCULATED PARAMETERS

Main Cavity Frequency Main to Side Cavity

Depth of (MHZ) Coupling
Overlap ‘d’
(mm) Measured Calculated Measured Calculated
6 2997.85 2994.96 0.0127 0.0111
7.6 2991.79 2988.16 0.0216 0.0204
8.6 2987.55 2984.69 0.0282 0.0281
9.2 2984.15 2982.94 0.0321 0.0335

IV. CALCULATIONS AND RESULTS

To evaluate the inter-cavity coupling constant one has to first
evaluate the fields at the center of the ellipse by which the aperture
is represented. We do this by using the finite element routine
developed in [7]. The computed values of the frequency of the main
cavity (with the aperture on its wall), and the intercavity coupling
constant are given in Table I for different sizes and positions of
the iris as determined by the depth of overlap d. Along with these
the corresponding experimental values are also given. The uncut
resonant frequency of the main cavity used for generating Table I
was 3006.7 MHz. Earlier we only had the experimental technique.
The new aspect is our ability to predict the values. The prediction is
precise enough for our needs during the initial design stage. Thus,
we have been able to simplify the design process.
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Shape Function Optimization in the Finite
Element Analysis of Waveguides

H. E. Herndndez-Figueroa and G. Pagiatakis

Abstract—In this paper, a novel finite element technique is presented,
which can substantially reduce the computational effort required for the
analysis of waveguide structures. Demonstrative examples, whose finite
element solutions are obtained by combining this technique with two
well-known formulations— E, — H. and H-field—are given.

I. INTRODUCTION

A drawback of the finite element method when applied to modal
waveguide analysis is the extensive use of computer resources:
memory space and time. Although the order of the resulting matrix
eigenvalue problem mainly depends on the geometry of the specific
structure analyzed, the kind of mesh adopted, and the formulation
used, most of these problems demand a large amount of data
manipulations. However, substantial reduction of the computational
effort can be achieved by taking advantage of the Rayleigh—Ritz
Principle (RRP), which is the basis of the o-finite element technique
[1]-[3]. This technique was first introduced by Laura and co-workers
(sec [1] and references therein) who used modified basis functions
for the bilinear quadrilateral (Q)1) elements applied to the scalar 2-D
Helmholtz equation. In [2], novel basis functions were introduced to
deal with the versatile linear triangular (Py) elements, and applied to
the vectorial E, — H, formulation [4]. Also, in that reference, the
performances of those two sets of basis functions were compared,
and the results showed almost no differences in terms of accuracy.
However, as the modified P; functions provide close analytical
expressions for the integrals associated with the elements of the
elementary matrices, these functions are much more attractive than
the ()1 ones, which instead require the use of numerical integration
schemes, and therefore, more CPU time.

In this paper, the P;-o-finite element technique is presented, and
the conditions for combining with finite element formulations for the
analysis of waveguide structures are discussed. Also, the feasibility
of such combined approaches is demonstrated by making use of the
widely known E, — H. and H-ficld [5] formulations, applied to the
analysis of hollow and dielectric-loaded metallic waveguides which
possess analytical solutions [6].

II. THE P;-a-FINITE ELEMENT TECHNIQUE

This technique, contrary to the common practice of increasing the
mesh size or the basis function order, minimizes the discretization
error, for a given mesh, by taking advantage of the RRP. According
to this principle, the approximate eigenvalues );, obtained by solving
the resulting matrix eigenvalue problem Ax = ABux, where A and
B are Hermitian and B is positive definite, are always upper bounds
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for the cxact eigenvalues X, that is, X\, < .. This suggests the
introduction of an extra parameter in the finite-element scheme,
say «, such that A, becomes a function of a: X, — A/(a) =
(2T () Aa)x(a))/({2T (a) B{)z (). Thus, A, () can be min-
imized in order to reach closer values to A,. If that minimum occurs
for & = @opt, then according to the RRP, X, < A (aopt) < Al

In order to meet the requirements of the RRP, we introduce the
parameter « as an exponential factor in the conventional P; basis
functions [7], yielding the following set of suitable modified local
shape functions [2], [3]:

U, =1-(&+m° (1a)
U, =1-(1-¢" (1b)
Us=1—(1-n)* (1o)

where the coordinates (£,7n) are related to the so-called master
finite element [7], é, which is a triangle with vertices located at
(0,0), (1,0), and (0,1). The conventional set of P; local shape
functions is obtained by replacing « = 1. Also, when o > 1,
those modified functions are concave and, therefore, more suitable for
solving second-order differential operators [2] than the conventional
ones.

On the other hand, we observe that the elements of the elementary
matrices [7] of probably all the finite element formulations available
for waveguide analysis, apart form constants, can be expressed in
terms of the following three equivalent kinds of exact integrals [2],

[3]:

/(£+77)P(1—€)qd§dn /(£+n)p(1—n)qd£dn

[(1 — £)°(1— m)%dg di

/(p+1)(g+1)
-Te+1I(¢+1)/

I'p+4¢+3)

g > —1 )

where p, ¢ are real functions of «, and I'(z) represents the Gamma
function. Thus, all the terms of such modified elementary matrices can
be written as the product of the conventional ones times very simple
analytical a-dependent factors which assume the value one when « is
set to one. Consequently, the implementation of this technique in the
conventional finite element formulations requires neither additional
numerical integrations nor extra memory space.

III. NUMERICAL RESULTS

First, we analyzed the TE;; /TM1; modes of the hollow metallic
rectangular guide shown in cross section in Fig. 1(a). For both
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Fig. 1. (a) The cross section of the hollow metallic rectangular waveguide

and 2 x 2 mesh. (b) ko versus . E, — H, and H-field formulations: solid
and dashed curves, respectively; 7 x 2 mesh (squares), 4 X 4 mesh (circles),
and 11 x 11 mesh (triangles).

formulations, the propagation constant 3 was set equal to 1 mm L.

In addition, in order to facilitate the comparison, for the £, — H,
formulation, the effective propagation constant B¢ = [/ko was
set to 1/1.222080, where the exact value of ko (wave number in
vacuum) ko = 1.222080 mm~' was adopted. Fig. 1(b) illustrates
the variation of the calculated %o versus the parameter o for three
different meshes, and the numerical results are listed in Table 1. In
all cases, there exists an optimum value of o = wopt at which the
finite elements solution of ko(c«) is minimized and approaches the
exact value. Table I shows that for a given mesh, the accuracy can be
substantially improved. For instance, a 7 x 2 mesh yields a substantial
accuracy improvement: form 0.694% to 0.002%, and from 0.93% to
0.005%, for the E; — H, and H-field formulations, respectively.
Table I also shows that an 11 x 11 mesh with & = 1 offers the

TABLE 1
REesuLTs FOR THE HOLLOW METALLIC RECTANGULAR WAVEGUIDE

a=1 Q= Uopt

Formulation Mesh ko (mm™1) Error (%) ko (mm~1) Error (%) Qopt
B - H. 7Tx2 1.230516 0.694 1.222111 0.002 1.17
4 x4 1.228005 0.485 1.222434 0.029 1.16

11 x 11 1.222426 0.028 1.222100 0.002 1.04

H-Field 7 %2 1.233446 0.930 1.222146 0.005 1.20
4 x4 1.226613 0.371 1.222459 0.031 1.20

11 x 11 1.222428 0.028 1.222097 0.001 1.04
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same accuracy as a 4 X 4 mesh with & = ap¢. Consequently, in this
example, the number of unknowns was reduced by a factor of 7.5,
and the CPU time, including three iterations to determine copt, was
reduced by a factor of 10. The method adopted for solving the matrix
eigenvalue problem was the subspace iteration.

Second, we analyzed the fundamental mode of the dielectric-
loaded metallic rectangular waveguide shown in cross section in
Fig. 2(a). For both formulations, we assumed # = 1 mm™'
However, in addition, for the F, — H, formulation we assumed
Berr = 1/0.808724, where the exact value ko = 0.808724 mm~!
was adopted. Fig. 2(b) illustrates the variation of ko versus the
exponential parameter «, for three different meshes, and the related
numerical results are listed in Table II. Again, the values obtained
using o = aepy are closer to the exact solution than the conventional
ones obtained with « = 1. Table II shows, for instance, that the
same accuracy can be obtained by using either a 10 x 6 mesh with
o =1, or a7 x4 mesh with @ = acpt. Consequently, the number of
unknowns was reduced by a factor of 2, and the CPU time, including
three iterations, was reduced by a factor of 1.5.

The curves representing the dependence of k on , show a very
regular behavior with a well-defined minimum. Consequently, this
makes the calculation of a.p; very easy—no more than six attempts
were necessary in all the situations analyzed. However, this number
can be reduced to only three, by noticing that such curves can be very
well fitted by quadratic ones of the kind k(a) = A; + A2 + Aza?,
where A, 2 3 are coefficients to be determined.

Although in almost all the situations it is possible to reduce the
number of unknowns, there will be cases in which even that reduced
number can be quite large. The consequence of this is that the need
of at least three iterations to calculate o.py can make the present
technique more CPU time consuming than the conventional finite
element method (a = 1).

However, the drawback mentioned above can still be overcome
by the present technique. Extensive numerical experiments have
shown that for a given mode, the variations of aept and k(aops)
are practically negligible for all points of the associated dispersion
curve [2]. Typical variations are less than 0.5% and 0.01% for aops
and k{aopt ), respectively. Therefore, one needs to calculate copt only
once. The rest of the curve can be determined by using the same aopt,
almost maintaining the same improved accuracy. Consequently, even
if the reduced number of unknowns is significant, it is still possible to
obtain a reduction in CPU time, which would be, in fact, proportional
to the number of points required to determine the dispersion curve.

Finally, the results of the situations so far analyzed show that
the optimization of a also improves the accuracy of the fields
representation. ‘
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Fig. 2. (a) The cross section of the dielectric-loaded metallic rectangular
waveguide and 4 x 2 mesh. (b) ko versus o. E, — H. and H field
formulations: solid and dashed curves, respectively; 6 x 4 mesh (squares),
7 x 4 mesh (circles), and 10 x 6 mesh (triangles).

IV. CONCLUSIONS

In this paper, the P;-a technique has been presented to be
capable of being combined with virtually any available finite element
formulation. The results obtained show that a substantial reduction
in the number of unknowns, and consequently CPU time, can be
achieved. In principle, this technique should be also useful for the
analysis of optical waveguides. However, its application to nonlinear
waveguide problems, where the nonlinear iterations increase the
computational effort considerably, is particularly recommended.

.

TABLE 11
RESULTS FOR THE DIELECTRIC-LOADED METALLIC RECTANGULAR GUIDE

a=1 Q = Oopt

Formulation Mesh ko (mm~1) Error (%) ko (mm~1) Error (%) Qopt
E,—H, 6 x4 0.813998 0.652 0.809910 0.147 1.09
7Tx 4 0.813101 0.541 0.809400 0.083 1.13

10 x 6 0.809717 0.086 0.808785 0.007 1.05

H -Field 6 X 4 0.813671 0.612 0.811066 0.289 1.08
7 x 4 0.813397 0.578 0.810015 0.160 1.12

10 x 6 0.810009 0.159 0.808789 0.008 1.05




1238 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 6/7, JUNE/JULY 1993

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Fernidndez and Dr. K. D.
Leaver for helpful discussions.

REFERENCES

[1] J.C. Utjes, G.S. Sarmiento, and P. A. A. Laura, “Nonlinear optimization
of the shape functions in the finite element method when determining
cut-off frequencies of arbitrary cross section,” IEEE Trans. Microwave
Theory Tech., vol. MTT-36, pp. 151-152, Jan. 1988.

[2] H.E. Hernindez-Figueroa, “Optimized finite elements for solving the
Helmbholtz 2-D eigenvalue problem,” M.Sc. thesis, Dep. Informatics,
Pontifical Catholic Univ., Rio de Janeiro, Brazil, 1988 (in Portuguese).

(3]

(41

B3]

(6l
7

H.E. Herndndez-Figueroa and G. Pagiatakis, “Size reduction of the
H-field finite element formulation for waveguide structure analysis,”
in Proc. IEE Int. Conf. Computat. Electromagn. (London), Nov. 1991,
pp- 272-275.

Z.]J. Csendes and P. Silvester, “Numerical solution of dielectric loaded
waveguides: I—Finite-element analysis,” IEEE Trans. Microwave Theory
Tech., vol. MTT-12, pp. 1124-1131, Dec. 1970.

B.M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and
microwave waveguide problems,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-32, pp. 20—28, Jan. 1984.

R.E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill,
1960.

E. B. Becker, G.F. Carey, and T. Oden, Finite Elements. An Introduction,
Vol. I.  Englewood Cliffs, NJ: Prentice-Hall, 1981.



